MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)
Journal Article

Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)

2010
Request Book From Autostore and Choose the Collection Method
Overview
Aerosol mass and the absorbing fraction are important variables, needed to constrain the role of atmospheric particles in the Earth radiation budget, both directly and indirectly through CCN activation. In particular, their monitoring in remote areas and mountain sites is essential for determining source regions, elucidating the mechanisms of long range transport of anthropogenic pollutants, and validating regional and global models. Since March 2006, aerosol mass and black carbon concentration have been monitored at the Nepal Climate Observatory-Pyramid, a permanent high-altitude research station located in the Khumbu valley at 5079 m a.s.l. below Mt. Everest. The first two-year averages of PM1 and PM1−10 mass were 1.94 μg m−3 and 1.88 μg m−3, with standard deviations of 3.90 μg m−3 and 4.45 μg m−3, respectively, while the black carbon concentration average is 160.5 ng m−3, with a standard deviation of 296.1 ng m−3. Both aerosol mass and black carbon show well defined annual cycles, with a maximum during the pre-monsoon season and a minimum during the monsoon. They also display a typical diurnal cycle during all the seasons, with the lowest particle concentration recorded during the night, and a considerable increase during the afternoon, revealing the major role played by thermal winds in influencing the behaviour of atmospheric compounds over the high Himalayas. The aerosol concentration is subject to high variability: in fact, as well as frequent \"background conditions\" (55% of the time) when BC concentrations are mainly below 100 ng m−3, concentrations up to 5 μg m−3 are reached during some episodes (a few days every year) in the pre-monsoon seasons. The variability of PM and BC is the result of both short-term changes due to thermal wind development in the valley, and long-range transport/synoptic circulation. At NCO-P, higher concentrations of PM1 and BC are mostly associated with regional circulation and westerly air masses from the Middle East, while the strongest contributions of mineral dust arrive from the Middle East and regional circulation, with a special contribution from North Africa and South-West Arabian Peninsula in post-monsoon and winter season.
Publisher
Copernicus GmbH,European Geosciences Union,Copernicus Publications

MBRLCatalogueRelatedBooks