MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments
Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments
Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments
Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments
Journal Article

Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments

2019
Request Book From Autostore and Choose the Collection Method
Overview
Genome-enabled prediction plays an essential role in wheat breeding because it has the potential to increase the rate of genetic gain relative to traditional phenotypic and pedigree-based selection. Since the performance of wheat lines is highly influenced by environmental stimuli, it is important to accurately model the environment and its interaction with genetic factors in prediction models. Arguably, multi-environmental best linear unbiased prediction (BLUP) may deliver better prediction performance than single-environment genomic BLUP. We evaluated pedigree and genome-based prediction using 35,403 wheat lines from the Global Wheat Breeding Program of the International Maize and Wheat Improvement Center (CIMMYT). We implemented eight statistical models that included genome-wide molecular marker and pedigree information as prediction inputs in two different validation schemes. All models included main effects, but some considered interactions between the different types of pedigree and genomic covariates via Hadamard products of similarity kernels. Pedigree models always gave better prediction of new lines in observed environments than genome-based models when only main effects were fitted. However, for all traits, the highest predictive abilities were obtained when interactions between pedigree, genomes, and environments were included. When new lines were predicted in unobserved environments, in almost all trait/year combinations, the marker main-effects model was the best. These results provide strong evidence that the different sources of genetic information (molecular markers and pedigree) are not equally useful at different stages of the breeding pipelines, and can be employed differentially to improve the design and prediction of the outcome of future breeding programs.
Publisher
Oxford University Press
Subject