MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo
The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo
The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo
The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo
Journal Article

The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo

2018
Request Book From Autostore and Choose the Collection Method
Overview
Coating enhancement of black carbon (BC) light absorption (Eabs) is a large uncertainty in modelling direct radiative forcing (DRF) by BC. Reported Eabs values after atmospheric aging vary widely and the mechanisms responsible for enhancing BC absorption remain elusive. Here, we report on the direct field measurement of size-resolved mixing state, Eabs, and aerosol single-scattering albedo (SSA) at λ = 532 nm at a rural site in east China from June to July 2016. Strong diurnal variability of Eabs, SSA, and Ox (Ox = NO2 + O3, a proxy for atmospheric photochemical aging) was observed. A method that combined Eabs and SSA was developed to retrieve the fraction contribution of BC absorption (fBC), lensing-driven enhancement (fLens), as well as the fractional contribution of coating absorption (fraction absorption contribution (fShell), the coated shell diameter (DShell) and the imaginary part of the complex refractive index (CRI) of the shell (kShell)). Parameterization of Eabs and SSA captures much of the influence of BC coating and the particle absorption. In our measurements at this site, the results showed that the absorption amplification depended on the coating thickness and the absorption of coating materials, and photochemistry plays a role in modifying the absorption of BC-containing particles. The lensing-driven enhancement was reduced by light absorption of the shell. One implication of these findings is that the contribution of light-absorbing organic compounds (brown carbon, BrC) at a longer aging time should be included in climate models.