Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Dynamic structural equation models with binary and ordinal outcomes in Mplus
by
Savord, Andrea
, McNeish, Daniel
, Somers, Jennifer A.
in
Behavioral Science and Psychology
/ Cognitive Psychology
/ Humans
/ Models, Statistical
/ Psychology
2024
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dynamic structural equation models with binary and ordinal outcomes in Mplus
by
Savord, Andrea
, McNeish, Daniel
, Somers, Jennifer A.
in
Behavioral Science and Psychology
/ Cognitive Psychology
/ Humans
/ Models, Statistical
/ Psychology
2024
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dynamic structural equation models with binary and ordinal outcomes in Mplus
Journal Article
Dynamic structural equation models with binary and ordinal outcomes in Mplus
2024
Request Book From Autostore
and Choose the Collection Method
Overview
Intensive longitudinal designs are increasingly popular, as are dynamic structural equation models (DSEM) to accommodate unique features of these designs. Many helpful resources on DSEM exist, though they focus on continuous outcomes while categorical outcomes are omitted, briefly mentioned, or considered as a straightforward extension. This viewpoint regarding categorical outcomes is not unwarranted for technical audiences, but there are non-trivial nuances in model building and interpretation with categorical outcomes that are not necessarily straightforward for empirical researchers. Furthermore, categorical outcomes are common given that binary behavioral indicators or Likert responses are frequently solicited as low-burden variables to discourage participant non-response. This tutorial paper is therefore dedicated to providing an accessible treatment of DSEM in M
plus
exclusively for categorical outcomes. We cover the general probit model whereby the raw categorical responses are assumed to come from an underlying normal process. We cover probit DSEM and expound why existing treatments have considered categorical outcomes as a straightforward extension of the continuous case. Data from a motivating ecological momentary assessment study with a binary outcome are used to demonstrate an unconditional model, a model with disaggregated covariates, and a model for data with a time trend. We provide annotated M
plus
code for these models and discuss interpretation of the results. We then discuss model specification and interpretation in the case of an ordinal outcome and provide an example to highlight differences between ordinal and binary outcomes. We conclude with a discussion of caveats and extensions.
Publisher
Springer US
This website uses cookies to ensure you get the best experience on our website.