MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species
Journal Article

Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species

2021
Request Book From Autostore and Choose the Collection Method
Overview
Explaining why some species are widespread, while others are not, is fundamental to biogeography, ecology, and evolutionary biology. A unique way to study evolutionary and ecological mechanisms that either limit species’ spread or facilitate range expansions is to conduct research on species that have restricted distributions. Nonindigenous species, particularly those that are highly invasive but have not yet spread beyond the introduced site, represent ideal systems to study range size changes. Here, we used species distribution modeling and genomic data to study the restricted range of a highly invasive Australian marine species, the ascidian Pyura praeputialis. This species is an aggressive space occupier in its introduced range (Chile), where it has fundamentally altered the coastal community. We found high genomic diversity in Chile, indicating high adaptive potential. In addition, genomic data clearly showed that a single region from Australia was the only donor of genotypes to the introduced range. We identified over 3,500 km of suitable habitat adjacent to its current introduced range that has so far not been occupied, and importantly species distribution models were only accurate when genomic data were considered. Our results suggest that a slight change in currents, or a change in shipping routes, may lead to an expansion of the species’ introduced range that will encompass a vast portion of the South American coast. Our study shows how the use of population genomics and species distribution modeling in combination can unravel mechanisms shaping range sizes and forecast future range shifts of invasive species.