Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Increase in the intensity of an optical signal with fluorescein during proton and carbon‐ion irradiation
by
Yabe, Takuya
, Akagi, Takashi
, Yamamoto, Seiichi
in
Cameras
/ Carbon
/ carbon ion
/ Cherenkov light
/ Energy
/ fluorescein
/ imaging
/ Light
/ luminescence
/ Monte Carlo simulation
/ proton
/ Radiation Oncology Physics
/ X-rays
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Increase in the intensity of an optical signal with fluorescein during proton and carbon‐ion irradiation
by
Yabe, Takuya
, Akagi, Takashi
, Yamamoto, Seiichi
in
Cameras
/ Carbon
/ carbon ion
/ Cherenkov light
/ Energy
/ fluorescein
/ imaging
/ Light
/ luminescence
/ Monte Carlo simulation
/ proton
/ Radiation Oncology Physics
/ X-rays
2021
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Increase in the intensity of an optical signal with fluorescein during proton and carbon‐ion irradiation
by
Yabe, Takuya
, Akagi, Takashi
, Yamamoto, Seiichi
in
Cameras
/ Carbon
/ carbon ion
/ Cherenkov light
/ Energy
/ fluorescein
/ imaging
/ Light
/ luminescence
/ Monte Carlo simulation
/ proton
/ Radiation Oncology Physics
/ X-rays
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Increase in the intensity of an optical signal with fluorescein during proton and carbon‐ion irradiation
Journal Article
Increase in the intensity of an optical signal with fluorescein during proton and carbon‐ion irradiation
2021
Request Book From Autostore
and Choose the Collection Method
Overview
Purpose Although the imaging of luminescence emitted in water during irradiation of protons and carbon ions is a useful method for range and dose estimations, the intensity of the images is relatively low due to the low photon production of the luminescence phenomenon. Therefore, a relatively long time is required for the imaging. Since a fluorescent dye, fluorescein, may increase the intensity of the optical signal, we measured the luminescence images of water with different concentrations of fluorescein during irradiation of protons and carbon ions and compared the results with those by measurements with water. Methods A cooled charge‐coupled device (CCD) camera was used for imaging a water phantom with different concentrations of fluorescein from 0.0063 to 0.025 mg/cm3, in addition to a water phantom without fluorescein during irradiation of 150‐MeV protons and 241.5‐MeV/n carbon ions. Results For both protons and carbon ions, the intensity of the luminescence images increased as the concentration of fluorescein increased. With a fluorescein concentration of 0.025 mg/cm3, the intensities increased to more than 10 times those of water for both protons and carbon ions. Although the shape of the depth profiles of luminescence images of water with fluorescein appeared similar to that of water for protons, those for carbon ions were different from those of water due to the increase in the Cherenkov light component at shallow depths by the decrease in the angular dependencies of the Cherenkov light. Conclusion We confirmed the increase in intensity of the luminescence of water by adding fluorescein for particle ions. With a small amount of Cherenkov light contamination in the images, such as protons, the relative distributions of the luminescence images with fluorescein were similar to that of water and will be used for range or dose determination in a short time.
This website uses cookies to ensure you get the best experience on our website.