MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Journal Article

Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models

2015
Request Book From Autostore and Choose the Collection Method
Overview
Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, SSDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a 'probability ranking' rule based on species richness predictions and rough probabilities from SDMs, and a 'trait range' rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results: We showed that all independent constraints contributed to reduce species richness overprediction. Only the 'probability ranking' rule allowed slight but significant improvements in the predictions of community composition. Main conclusions: We tested various implementations of the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.