Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Reliability and Variability of tDCS Induced Changes in the Lower Limb Motor Cortex
by
Madhavan, Sangeetha
, Freels, Sally
, Sriraman, Aishwarya
in
lower limb
/ motor cortex
/ reliability
/ tDCS
/ tibialis anterior
/ TMS
/ variability
2016
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reliability and Variability of tDCS Induced Changes in the Lower Limb Motor Cortex
by
Madhavan, Sangeetha
, Freels, Sally
, Sriraman, Aishwarya
in
lower limb
/ motor cortex
/ reliability
/ tDCS
/ tibialis anterior
/ TMS
/ variability
2016
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reliability and Variability of tDCS Induced Changes in the Lower Limb Motor Cortex
Journal Article
Reliability and Variability of tDCS Induced Changes in the Lower Limb Motor Cortex
2016
Request Book From Autostore
and Choose the Collection Method
Overview
Background: Transcranial direct current stimulation (tDCS) is emerging as a promising adjuvant to enhance motor function. However, there has been increasing reservations about the reliability and variability of the neuromodulatory effects evoked by tDCS. Objective/Hypothesis: The main purpose of this study was to explore the test-retest reliability and inter-individual variability of tDCS of the lower limb M1 and the relationship between transcranial magnetic stimulation (TMS)-related measures and tDCS-induced changes. Methods: Fifteen healthy participants received anodal tDCS of the lower limb M1 either when performing a lower limb motor task or when the limb was at rest. Each condition was tested twice. tDCS induced changes in corticomotor excitability of the tibialis anterior muscle were measured using TMS. A repeated measures ANOVA was performed to examine efficacy of tDCS between the two task conditions. Intraclass correlation coefficients (ICC) and variance component analyses were performed to examine reliability and variability respectively. Results: A significant increase in in corticomotor excitability was noted for the tDCS-task condition at 140% active motor threshold (AMT) and when comparing recruitment curve slopes, but not at 120% and 130% AMT. Overall, ICC values between testing days for each stimulation condition ranged from 0.6–0.9. Higher ICCs were seen for higher TMS intensities (140% AMT) and recruitment curve slopes. Inter-individual variability contributed to 34% of the exhibited variance. Conclusions: Our data suggest that the TMS-related measure used to assess neuromodulation after tDCS has an effect on its perceived test-retest reliability and inter-individual variability. Importantly, we noticed that a high reliability and low variability does not necessarily indicate clinical efficacy of tDCS as some participants showed little to no modulation of corticomotor excitability consistently.
Publisher
MDPI,MDPI AG
Subject
This website uses cookies to ensure you get the best experience on our website.