MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota
Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota
Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota
Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota
Journal Article

Development of an innovative and “green” stir bar sorptive extraction–thermal desorption–gas chromatography–tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota

2014
Request Book From Autostore and Choose the Collection Method
Overview
There is a growing awareness of the need to reduce the negative impact of chemical analyses on the environment and to develop new eco-friendly and sustainable analytical methods without compromising performance. In this study, we developed a \"green\" analytical method enabling the accurate and simultaneous routine analysis of 21 polycyclic aromatic hydrocarbons (PAHs) in reduced quantities (100 mg and 1 g wet weight (WW)) of marine biota samples (fish muscle, mussel and oyster tissues) using alkaline digestion combined with stir bar sorptive extraction-thermal desorption-gas chromatography-tandem mass spectrometry (SBSE-GC-MS/MS). The innovative method provides good selectivity and specificity for most compounds. In 1 gWW samples, limits of quantification (LOQs) ranged from 1 to 10 mu g/kgWW in fish muscle and from 0.5 to 10 mu g/kgWW in mussel tissue. The method enables most analytes to be quantified below the restrictive limits established by the European Commission (2 and 10 mu g/kgWW in fish muscle and bivalve mollusc, respectively). Higher LOQs were obtained in 100 mgWW samples ranging from 1 to 50 mu g/kgWW. Recovery and linearity were assessed for all analytes. The results were satisfactory for most compounds with recoveries ranging from 94% to 117% in 1 gWW mussel samples at spike concentration of 10 ng/gWW with standard deviation not exceeding 12%. However, results confirmed that the SBSE efficiency is affected by the complexity of biological matrices, especially for high molecular weight compounds in lipid-rich mussel tissue. Because of the matrix effects, matrix-matched calibrations were carried out. Validation was performed using the standard reference material 1974c with recovery ranging from 71% to 119% except for naphthalene, anthracene and benzo(e)pyrene that were therefore not validated. Overall, the developed method meets analytical validation criteria for most compounds. Thanks to the combination of alkaline digestion and SBSE, which greatly simplifies sample treatment and limits solvent use to ethanol, the developed method followed most green analytical chemistry principles.