MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Journal Article

Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries

2022
Request Book From Autostore and Choose the Collection Method
Overview
Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li.
Publisher
John Wiley & Sons, Inc,John Wiley and Sons Inc,Wiley