MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis
Journal Article

The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis

2025
Request Book From Autostore and Choose the Collection Method
Overview
PRRSV nsp1α, the first viral protein translated in virus-infected cells, is released from viral polyprotein 1a through autocleavage. It plays important roles in viral replication, the suppression of the host innate immune response, and the modulation of cell-mediated immune responses. Nsp1α forms a homodimer in vitro. In this study, we aimed to elucidate the functional significance of nsp1α dimerization. Using the alanine scanning strategy, we identified valine132 and proline134 as critical residues for nsp1α dimerization. Using recombinant viruses expressing an additional FLAG-nsp1α mutant (V132A or P134A), we demonstrated that both the V132A and P134A mutations disrupted nsp1α dimerization in PRRSV-infected cells. When ectopically expressed, the V132A or P134A mutation did not affect the ability of nsp1α to antagonize host type I IFN production or degrade SLA-I molecules. Introducing V132A or P134A mutations into an HP‒PRRSV replicon system significantly interfered with the expression of a Gaussia luciferase reporter and viral proteins, suggesting that nsp1α dimerization is critical for viral replication. Using PRRSV reverse genetics, a recombinant virus carrying the V132A mutation (vV132A) was successfully rescued, while the P134A mutation was lethal. Compared with the wild-type virus, vV132A significantly attenuated growth and reduced the relative expression levels of subgenomic RNAs in MARC-145 cells. In BHK-21 cells transfected with full-length cDNA clones, the P134A mutation nearly completely blocked the synthesis of specific sgRNAs at both the minus- and positive-strand levels while maintaining sgRNA6 accumulation. Thus, nsp1α dimerization is essential for viral RNA synthesis and transcriptional regulation but appears to be dispensable for both the autoproteolytic activity and immune evasion functions of PCPα. This study not only enhances our fundamental knowledge of PRRSV biology but also establishes a foundation for developing targeted antiviral strategies against PRRSV and related arteriviruses.