MbrlCatalogueTitleDetail

Do you wish to reserve the book?
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer
Journal Article

HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer

2021
Request Book From Autostore and Choose the Collection Method
Overview
As one of the deadliest malignancies, gastric cancer (GC) is often accompanied by a low 5-year survival following initial diagnosis, which accounts for a substantial proportion of cancer-related deaths each year worldwide. Altered epigenetic modifications of cancer oncogenes and tumor suppressor genes emerge as novel mechanisms have been implicated the pathogenesis of GC. In the current study, we aim to elucidate whether histone deacetylase 3 (HDAC3) exerts oncogenic role in GC, and investigate the possible mechanism. Initially, we collected 64 paired cancerous and noncancerous tissues surgically resected from GC patients. Positive expression of HDAC3, FTO, and MYC in the tissues was measured using Immunohistochemistry. Meanwhile, GC cell line BGC-823/AGS was selected and treated with lentivirus vectors for alteration of HDAC3, FTO, or FOXA2 expressions, followed by detection on mRNA and protein levels of HDAC3, FOXA2, FTO, and MYC using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. The results demonstrated that the expressions of HDAC3, FTO and MYC were upregulated, while FOXA2 expression was downregulated in GC tissues and cells. After that, the cell viability, migration, and invasion of GC cells were assessed by CCK-8 and Transwell assays, revealing that HDAC3 accelerated GC cell viability, migration and invasion by degrading FOXA2. Subsequently, the binding relationship among HDAC3, FOXA2, FTO, and MYC was assessed by assays of immunoprecipitation, dual-luciferase reporter gene, and chromatin immunoprecipitation assay. Methylation of m6A mRNA in GC cells was detected via gene-specific m6A qPCR and dot-blot assays. The transcription factor FOXA2 was found to bind to the FTO gene promoter and decreased its expression, while FTO stabilized MYC mRNA by reducing m6A methylation of MYC in GC cells. In addition, HDAC3 was observed to maintain the FTO/m6A/MYC signaling and regulated GC progression, which was also supported by in vivo animal study data of GC cell tumorigenesis in nude mice. These key observations uncover the tumor-initiating activities of HDAC3 in GC through its regulation on FOXA2-mediated FTO/m6A/MYC axis, highlighting the potential of therapeutically targeting epigenetic modifications to combat GC.