MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enhancing a machine learning model for predicting agricultural drought through feature selection techniques
Enhancing a machine learning model for predicting agricultural drought through feature selection techniques
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enhancing a machine learning model for predicting agricultural drought through feature selection techniques
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enhancing a machine learning model for predicting agricultural drought through feature selection techniques
Enhancing a machine learning model for predicting agricultural drought through feature selection techniques

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enhancing a machine learning model for predicting agricultural drought through feature selection techniques
Enhancing a machine learning model for predicting agricultural drought through feature selection techniques
Journal Article

Enhancing a machine learning model for predicting agricultural drought through feature selection techniques

2024
Request Book From Autostore and Choose the Collection Method
Overview
This study aims to determine the crucial variables for predicting agricultural drought in various climates of Iran by employing feature selection methods. To achieve this, two databases were used, one consisting of ground-based measurements and the other containing six reanalysis products for temperature ( T ), root zone soil moisture (SM), potential evapotranspiration (PET), and precipitation ( P ) variables during the 1987–2019 period. The accuracy of the global database data was assessed using statistical criteria in both single- and multi-product approaches for the aforementioned four variables. In addition, five different feature selection methods were employed to select the best single condition indices (SCIs) as input for the support vector regression (SVR) model. The superior multi-products based on time series (SMT) showed increased accuracy for P , T , PET, and SM variables, with an average 47%, 41%, 42%, and 52% reduction in mean absolute error compared to SSP. In hyperarid climate regions, PET condition index was found to have high relative importance with 40% and 36% contributions to SPEI-3 and SPEI-6, respectively. This suggests that PET plays a key role in agricultural drought in hyperarid regions because of very low precipitation. Additionally, the accuracy results of different feature selection methods show that ReliefF outperformed other feature selection methods in agricultural drought modeling. The characteristics of agricultural drought indicate the occurrence of drought in 2017 and 2018 in various climates in Iran, particularly arid and semi-arid climates, with five instances and an average duration of 12 months of drought in humid climates.