MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis
Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis
Journal Article

Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis

2023
Request Book From Autostore and Choose the Collection Method
Overview
Silver nanoparticles act as antitumor agents because of their antiproliferative and apoptosis-inducing properties. The present study aims to develop silver nanoparticle-loaded liposomes for the effective management of cancer. Silver nanoparticle-encapsulated liposomes were prepared using the thin-film hydration method coupled with sonication. The prepared liposomes were characterized by DLS (Dynamic Light Scattering analysis), FESEM (Field Emission Scanning Electron Microscope), and FTIR (Fourier Transform Infrared spectroscopy). The in vitro drug release profile of the silver nanoparticle-loaded liposomes was carried out using the dialysis bag method and the drug release profile was validated using various mathematical models. A high encapsulation efficiency of silver nanoparticle-loaded liposome was observed (82.25%). A particle size and polydispersity index of 172.1 nm and 0.381, respectively, and the zeta potential of −21.5 mV were recorded. FESEM analysis revealed spherical-shaped nanoparticles in the size range of 80–97 nm. The in vitro drug release profile of the silver nanoparticle-loaded liposomes was carried out using the dialysis bag method in three different pHs: pH 5.5, pH 6.8, and pH 7.4. A high silver nanoparticle release was observed in pH 5.5 which corresponds to the mature endosomes of tumor cells; 73.32 ± 0.68% nanoparticle was released at 72 h in pH 5.5. Among the various mathematical models analyzed, the Higuchi model was the best-fitted model as there is the highest value of the correlation coefficient which confirms that the drug release follows the diffusion-controlled process. From the Korsmeyer–Peppas model, it was confirmed that the drug release is based on anomalous non-Fickian diffusion. The results indicate that the silver nanoparticle-loaded liposomes can be used as an efficient drug delivery carrier to target cancer cells of various types.