MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model
Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model
Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model
Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model
Journal Article

Myeloid-derived suppressor cells enhance the expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model

2016
Request Book From Autostore and Choose the Collection Method
Overview
The cancer-testis (CT) family of antigens are expressed in multiple types of malignant neoplasm and are silent in normal tissues, apart from the testis. Immunotherapy targeting CT antigens is a promising therapeutic strategy for treatment of solid tumors. One member of this family, melanoma-associated antigen A4 (MAGE-A4), has been demonstrated to be expressed in melanomas and lung cancer. Patients with tumors expressing the MAGE-A4 antigen exhibit specific cellular and humoral immune responses to the antigen, resulting in a favorable prognosis. Conversely, the expression of MAGE-A4 is associated with poor survival in lung cancer. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells, which are upregulated in the cancer microenvironment. Little is known regarding any potential correlation between the expression of MAGE-A4 antigens and the accumulation of MDSCs. The present study aimed to examine the association between circulating MDSC levels and MAGE-A4 expression in a mouse model of Lewis lung cancer. The expression of MAGE-A4 in tumor cells or tissues was evaluated using western blotting, while the percentage of MDSCs (CD11b+Gr-1+) in the blood was detected by flow cytometry. In addition, the suppressive capacity of MDSCs and the effectiveness of MDSC depletion were assessed in C57BL/6 tumor-bearing mice. MDSCs were demonstrated to upregulate MAGE-A4 expression via the phosphosphorylated-signal transducer and activator of transcription 3705 pathway, while depletion of MDSCs decreased the tumor growth rate, prolonged median survival and enhanced the recognition of MAGE-A4 by CD8+ T cells. These findings indicated that immunotherapeutic strategies involving induction of cytotoxic T lymphocytes that target MAGE-A4, in combination with MDSC depletion, may be an effective approach to immunotherapy for cancer types with high expression of MAGE-A4.