MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials
Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials
Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials
Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials
Journal Article

Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials

2022
Request Book From Autostore and Choose the Collection Method
Overview
ObjectiveTo investigate the degree of conversion (DC), Martens hardness (HM), elastic indentation modulus (EIT), and biaxial flexural strength (BFS) of six dual-polymerizing resin composite luting materials initially and after 2 and 7 days of aging.Materials and methodsSpecimens fabricated from Bifix QM (BIF; VOCO), Calibra Ceram (CAL; Dentsply Sirona), DuoCem (DUO; Coltène/Whaledent), G-CEM LinkForce (GCE; GC Europe), PANAVIA V5 (PAN; Kuraray Europe), and Variolink Esthetic DC (VAR; Ivoclar Vivadent) (n = 12 per material) were light-polymerized through 1 mm thick discs (Celtra Duo, Dentsply Sirona). DC, HM, and EIT were recorded directly after fabrication, and after 2 and 7 days of aging. As a final test, BFS was measured. Univariate ANOVAs, Kruskal–Wallis, Mann–Whitney U, Friedman, and Wilcoxon tests, and Weibull modulus were computed (p < 0.05).ResultsWhile CAL presented low DC, HM, EIT, and BFS values, DUO and BIF showed high results. Highest Weibull moduli were observed for VAR and DUO. DC and Martens parameters increased between the initial measurement and 2 days of aging, while aging for 7 days provided no further improvement.ConclusionsThe choice of dual-polymerizing resin composite luting material plays an important role regarding chemical and mechanical properties, especially with patients sensitive to toxicological issues. DUO may be recommended for bonding fixed dental prostheses, as it demonstrated significantly highest and reliable results regarding DC, HM, and BFS. As DC and HM showed an increase in the first 48 h, it may be assumed that the polymerization reaction is not completed directly after initial polymerization, which is of practical importance to dentists and patients.Clinical relevanceThe chemical and mechanical properties of dual-polymerizing resin composite luting materials influence the overall stability and long-term performance of the restoration.