MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press
A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press
A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press
A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press
Journal Article

A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press

2023
Request Book From Autostore and Choose the Collection Method
Overview
Impact by hailstone, volcanic rock, bird strike, or also dropping tools can cause damage to aircraft materials. For maximum safety, the goal is to increase Charpy impact strength (auc) of a carbon-fiber-reinforced thermoplastic polyphenylene sulfide polymer (CFRTP-PPS) composite for potential application to commercial aircraft parts. The layup was three cross-weave CF plies alternating between four PPS plies, [PPS-CF-PPS-CF-PPS-CF-PPS], designated [PPS]4[CF]3. To strengthen, a new process for CFRP-PPS was employed applying homogeneous low voltage electron beam irradiation (HLEBI) to both sides of PPS plies prior to lamination assembly with untreated CF, followed by hot press under 4.0 MPa at 573 K for 8 min. Experimental results showed a 5 kGy HLEBI dose was at or near optimum, increasing auc at each accumulative probability, Pf. Optical microscopy of 5 kGy sample showed a reduction in main crack width with significantly reduced CF separation and pull-out; while, scanning electron microscopy (SEM) and electron dispersive X-ray (EDS) mapping showed PPS adhering to CF. Electron spin resonance (ESR) of a 5 kGy sample indicated lengthening of PPS chains as evidenced by a reduction in dangling bond peak. It Is assumed that 5 kGy HLEBI creates strong bonds at the interface while strengthening the PPS bulk. A model is proposed to illustrate the possible strengthening mechanism.