MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia
Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia
Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia
Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia
Journal Article

Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia

2023
Request Book From Autostore and Choose the Collection Method
Overview
Defects in essential metabolic regulation for energy supply, increased oxidative stress promoting excitatory/inhibitory imbalance and phospholipid membrane dysfunction have been implicated in the pathophysiology of schizophrenia (SZ). The knowledge about the developmental trajectory of these key pathophysiological components and their interplay is important to develop new preventive and treatment strategies. However, this assertion is so far limited. To investigate the developmental regulations of these key components in the brain, we assessed, for the first time, in vivo redox state from the oxidized (NAD+) and reduced (NADH) form of Nicotinamide Adenine Dinucleotide (NAD), energy and membrane metabolites, inhibitory and excitatory neurotransmitters by 31P and 1H MRS during the neurodevelopment of an SZ animal model with genetically compromised glutathione synthesis (gclm-KO mice). When compared to age-matched wild type (WT), an increase in NAD+/NADH redox ratio was found in gclm-KO mice until early adulthood, followed by a decrease in full adults as observed in patients. Especially, in early postnatal life (P20, corresponding to childhood), levels of several metabolites were altered in gclm-KO mice, including NAD+, NAD+/NADH, ATP, and glutamine + glutamate, suggesting an interactive compensation for redox dysregulation between NAD, energy metabolism, and neurotransmission. The identified temporal neurometabolic regulations under deficits in redox regulation provide insights into preventive treatment targets for at-risk individuals, and other neurodevelopmental disorders involving oxidative stress and energetic dysfunction.
Publisher
Nature Publishing Group