MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters
Journal Article

Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters

2024
Request Book From Autostore and Choose the Collection Method
Overview
ObjectiveGlutamate transporters play a crucial role in neurotransmitter homeostasis, but studying their structure and function is challenging due to their membrane-bound nature. This study aims to investigate whether water-soluble QTY-variants of glutamate transporters EAA1, EAA2 and EAA3 retain the conformational characteristics and dynamics of native membrane-bound transporters.MethodsMolecular dynamics simulations and comparative genomics were used to analyze the structural dynamics of both native transporters and their QTY-variants. Native transporters were simulated in lipid bilayers, while QTY-variants were simulated in aqueous solution. Lipid distortions, relative solvent accessibilities, and conformational changes were examined. Evolutionary conservation profiles were correlated with structural dynamics. Statistical analyses included multivariate analysis to account for confounding variables.ResultsQTY-variants exhibited similar residue-wise conformational dynamics to their native counterparts, with correlation coefficients of 0.73 and 0.56 for EAA1 and EAA3, respectively (p < 0.001). Hydrophobic interactions of native helices correlated with water interactions of QTY- helices (rs = 0.4753, p < 0.001 for EAA1). QTY-variants underwent conformational changes resembling the outward-to-inward transition of native transporters.ConclusionsWater-soluble QTY-variants retain key structural properties of native glutamate transporters and mimic aspects of native lipid interactions, including conformational flexibility. This research provides valuable insights into the conformational changes and molecular mechanisms of glutamate transport, potentially offering a new approach for studying membrane protein dynamics and drug interactions.