MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion
Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion
Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion
Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion
Journal Article

Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome–lysosome fusion

2020
Request Book From Autostore and Choose the Collection Method
Overview
Syntaxin17, a key autophagosomal N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) protein, can associate with ATG8 family proteins SNAP29 and VAMP8 to facilitate the membrane fusion process between the double-membraned autophagosome and single-membraned lysosome in mammalian macroautophagy. However, the inherent properties of Syntaxin17 and the mechanistic basis underlying the interactions of Syntaxin17 with its binding proteins remain largely unknown. Here, using biochemical, NMR, and structural approaches, we systemically characterized Syntaxin17 as well as its interactions with ATG8 family proteins, SNAP29 and VAMP8. We discovered that Syntaxin17 alone adopts an autoinhibited conformation mediated by a direct interaction between its Habc domain and the Qa- SNARE motif. In addition, we revealed that the Qa-SNARE region of Syntaxin17 contains one LC3-interacting region (LIR) motif, which preferentially binds to GABARAP subfamily members. Importantly, the GABARAP binding of Syntaxin17 can release its autoinhibited state. The determined crystal structure of the Syntaxin17 LIR–GABARAP complex not only provides mechanistic insights into the interaction between Syntaxin17 and GABARAP but also reveals an unconventional LIR motif with a C-terminally extended 310 helix for selectively binding to ATG8 family proteins. Finally, we also elucidated structural arrangements of the autophagic Syntaxin17–SNAP29–VAMP8 SNARE core complex, and uncovered its conserved biochemical and structural characteristics common to all other SNAREs. In all, our findings reveal three distinct states of Syntaxin17, and provide mechanistic insights into the Syntaxin17-mediated autophagosome–lysosome fusion process.