MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair
Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair
Journal Article

Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair

2018
Request Book From Autostore and Choose the Collection Method
Overview
DNA damage poses a serious threat to genome integrity and greatly affects growth and development. To maintain genome stability, all organisms have evolved elaborate DNA damage response mechanisms including activation of cell cycle checkpoints and DNA repair. Here, we show that the DNA repair protein SNI1, a subunit of the evolutionally conserved SMC5/6 complex, directly links these two processes in Arabidopsis. SNI1 binds to the activation domains of E2F transcription factors, the key regulators of cell cycle progression, and represses their transcriptional activities. In turn, E2Fs activate the expression of SNI1, suggesting that E2Fs and SNI1 form a negative feedback loop. Genetically, overexpression of SNI1 suppresses the phenotypes of E2F-overexpressing plants, and loss of E2F function fully suppresses the sni1 mutant, indicating that SNI1 is necessary and sufficient to inhibit E2Fs. Altogether, our study revealed that SNI1 is a negative regulator of E2Fs and plays dual roles in DNA damage responses by linking cell cycle checkpoint and DNA repair.