MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation
Journal Article

Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation

2024
Request Book From Autostore and Choose the Collection Method
Overview
Structural resolution of protein interactions enables mechanistic and functional studies as well as interpretation of disease variants. However, structural data is still missing for most protein interactions because we lack computational and experimental tools at scale. This is particularly true for interactions mediated by short linear motifs occurring in disordered regions of proteins. We find that AlphaFold-Multimer predicts with high sensitivity but limited specificity structures of domain-motif interactions when using small protein fragments as input. Sensitivity decreased substantially when using long protein fragments or full length proteins. We delineated a protein fragmentation strategy particularly suited for the prediction of domain-motif interfaces and applied it to interactions between human proteins associated with neurodevelopmental disorders. This enabled the prediction of highly confident and likely disease-related novel interfaces, which we further experimentally corroborated for FBXO23-STX1B, STX1B-VAMP2, ESRRG-PSMC5, PEX3-PEX19, PEX3-PEX16, and SNRPB-GIGYF1 providing novel molecular insights for diverse biological processes. Our work highlights exciting perspectives, but also reveals clear limitations and the need for future developments to maximize the power of Alphafold-Multimer for interface predictions. Synopsis Based on thorough benchmarking of AlphaFold-Multimer a strategy for structure prediction was developed and applied to 62 protein interactions linked to neurological disease. Six novel protein interfaces were further experimentally corroborated. AlphaFold-Multimer (AF) largely fails to predict structures of interacting proteins involving short linear motifs when using full length sequences. A prediction strategy was developed based on protein fragmentation, which boosts AF sensitivity at costs of specificity. Application of this strategy to 62 protein interactions linked to neurological disease resulted in 18 correct or likely correct structural models. Six novel protein interfaces were further supported by experiments. Based on thorough benchmarking of AlphaFold-Multimer a strategy for structure prediction was developed and applied to 62 protein interactions linked to neurological disease. Six novel protein interfaces were further experimentally corroborated.