MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Empirical dynamic modeling for beginners
Empirical dynamic modeling for beginners
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Empirical dynamic modeling for beginners
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Empirical dynamic modeling for beginners
Empirical dynamic modeling for beginners

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Empirical dynamic modeling for beginners
Empirical dynamic modeling for beginners
Journal Article

Empirical dynamic modeling for beginners

2017
Request Book From Autostore and Choose the Collection Method
Overview
Natural systems are often complex and dynamic (i.e. nonlinear), making them difficult to understand using linear statistical approaches. Linear approaches are fundamentally based on correlation. Thus, they are ill-posed for dynamical systems, where correlation can occur without causation, and causation may also occur in the absence of correlation. “Mirage correlation” (i.e., the sign and magnitude of the correlation change with time) is a hallmark of nonlinear systems that results from state dependency. State dependency means that the relationships among interacting variables change with different states of the system. In recent decades, nonlinear methods that acknowledge state dependence have been developed. These nonlinear statistical methods are rooted in state space reconstruction, i.e. lagged coordinate embedding of time series data. These methods do not assume any set of equations governing the system but recover the dynamics from time series data, thus called empirical dynamic modeling (EDM). EDM bears a variety of utilities to investigating dynamical systems. Here, we provide a step-by-step tutorial for EDM applications with rEDM, a free software package written in the R language. Using model examples, we aim to guide users through several basic applications of EDM, including (1) determining the complexity (dimensionality) of a system, (2) distinguishing nonlinear dynamical systems from linear stochastic systems, and quantifying the nonlinearity (i.e. state dependence), (3) determining causal variables, (4) forecasting, (5) tracking the strength and sign of interaction, and (6) exploring the scenario of external perturbation. These methods and applications can be used to provide a mechanistic understanding of dynamical systems.