MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Reversible self-assembly of superstructured networks
Reversible self-assembly of superstructured networks
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Reversible self-assembly of superstructured networks
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reversible self-assembly of superstructured networks
Reversible self-assembly of superstructured networks

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reversible self-assembly of superstructured networks
Reversible self-assembly of superstructured networks
Journal Article

Reversible self-assembly of superstructured networks

2018
Request Book From Autostore and Choose the Collection Method
Overview
The dynamic reorganization of some cellular biopolymers in response to signals has inspired efforts to create artificial materials with similar properties. Freeman et al. created hydrogels based on peptide amphiphiles that can bear DNA strands that assemble into superstructures and that disassemble in response to chemical triggers. The addition of DNA conjugates induced transitions from micelles to fibers and bundles of fibers. The resulting hydrogels were used as an extracellular matrix mimic for cultured cells. Switching the hydrogel between states also switched astrocytes between their reactive and naïve phenotypes. Science , this issue p. 808 Large-scale redistribution of molecules in a supramolecular material generates chemically reversible superstructures. Soft structures in nature, such as protein assemblies, can organize reversibly into functional and often hierarchical architectures through noncovalent interactions. Molecularly encoding this dynamic capability in synthetic materials has remained an elusive goal. We report on hydrogels of peptide-DNA conjugates and peptides that organize into superstructures of intertwined filaments that disassemble upon the addition of molecules or changes in charge density. Experiments and simulations demonstrate that this response requires large-scale spatial redistribution of molecules directed by strong noncovalent interactions among them. Simulations also suggest that the chemically reversible structures can only occur within a limited range of supramolecular cohesive energies. Storage moduli of the hydrogels change reversibly as superstructures form and disappear, as does the phenotype of neural cells in contact with these materials.
Publisher
The American Association for the Advancement of Science,American Association for the Advancement of Science (AAAS)

MBRLCatalogueRelatedBooks