MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications
Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications
Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications
Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications
Journal Article

Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications

2025
Request Book From Autostore and Choose the Collection Method
Overview
This study presents a novel three-dimensional stacked capacitorless dynamic random access memory (1T-DRAM) architecture, designed using a partially etched nanosheet (PE NS) to overcome the scaling limitations of traditional DRAM designs. By leveraging the floating body effect, this architecture eliminates the need for capacitors, thereby improving integration density and memory performance. Through Sentaurus technology computer-aided design simulations, we compare the PE NS 1T-DRAM device with a conventional NS 1T-DRAM device to evaluate its effectiveness. The results reveal superior retention time (RT) and sensing margin (SM) performance of the proposed PE NS 1T-DRAM device, surpassing the memory criteria outlined by the International Roadmap for Devices and Systems, which requires an RT exceeding 64 ms at 358 K. This enhanced performance of the proposed device is attributed to its extension region, which functions as a potential well for efficient hole storage, as well as the suppression of Shockley‒Read‒Hall recombination. The PE NS 1T-DRAM device also demonstrates robustness to disturbances, maintaining over 89% of its SM and RT under diverse conditions. This superiority is again attributed to its extension region, which minimizes the effects of current flow and electrostatic potential rise. These results highlight the potential of the PE NS 1T-DRAM design for future high-density memory applications.