MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process
Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process
Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process
Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process
Journal Article

Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process

2019
Request Book From Autostore and Choose the Collection Method
Overview
The interaction of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) is of considerable importance in nitrification process. Ecophysiological interactions between the communities of AOB and NOB were investigated by monitoring NO2− as the intermediate compound in an organic carbon-depleted nitrifying activated sludge fed only NH4+ as a nitrogen source (40 mg/L). The presence of boom and bust (feast and famine) cycle successfully indicates the activity cycles of AOB and NOB through cultivation-dependent method. The maximum growth rate and yield for AOB in nitritation-dominant period were (0.67 day−1, 0.17 gVSS gN−1) and for NOB in nitratation-dominant period were (0.71 day−1, 0.072 gVSS gN−1). Soluble microbial products (SMP) and extracellular polymeric substances (EPS) generated by AOB were 1.2 and 1.8 mg/L, respectively, while NOB produced 0.6 mg/L of SMP and 1 mg/L of EPS. While NOB were low in utilization-associated products (UAP) (0.07 mg/L) and biomass-associated products (BAP) (0.12 mg/L), AOB were higher in UAP (0.15 mg/L) and BAP (0.3 mg/L). The continuation presence of zero C/N ratio, in either inlet ratio or net available ratio for the microbial community, can prolong and enhance nitratation process. NOB enrichment and nitratation intensification strategy through zero C/N ratio are able to reduce remarkably microbial metabolites 50% lower than conventional process and enhance nitrification efficiency in activated sludge-involved processes.