MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Non-Stationary Stochastic Optimization
Non-Stationary Stochastic Optimization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Non-Stationary Stochastic Optimization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Non-Stationary Stochastic Optimization
Non-Stationary Stochastic Optimization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Non-Stationary Stochastic Optimization
Non-Stationary Stochastic Optimization
Journal Article

Non-Stationary Stochastic Optimization

2015
Request Book From Autostore and Choose the Collection Method
Overview
We consider a non-stationary variant of a sequential stochastic optimization problem, in which the underlying cost functions may change along the horizon. We propose a measure, termed variation budget , that controls the extent of said change, and study how restrictions on this budget impact achievable performance. We identify sharp conditions under which it is possible to achieve long-run average optimality and more refined performance measures such as rate optimality that fully characterize the complexity of such problems. In doing so, we also establish a strong connection between two rather disparate strands of literature: (1) adversarial online convex optimization and (2) the more traditional stochastic approximation paradigm (couched in a non-stationary setting). This connection is the key to deriving well-performing policies in the latter, by leveraging structure of optimal policies in the former. Finally, tight bounds on the minimax regret allow us to quantify the “price of non-stationarity,” which mathematically captures the added complexity embedded in a temporally changing environment versus a stationary one.