MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics
Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics
Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics
Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics
Journal Article

Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics

2019
Request Book From Autostore and Choose the Collection Method
Overview
Electrocatalysis provides a powerful means to selectively transform molecules, but a serious impediment in making rapid progress is the lack of a molecular-based understanding of the reactive mechanisms or intermediates at the electrode–electrolyte interface (EEI). Recent experimental techniques have been developed for operando identification of reaction intermediates using surface infrared (IR) and Raman spectroscopy. However, large noises in the experimental spectrum pose great challenges in resolving the atomistic structures of reactive intermediates. To provide an interpretation of these experimental studies and target for additional studies, we report the results from quantum mechanics molecular dynamics (QM-MD) with explicit consideration of solvent, electrode–electrolyte interface, and applied potential at 298 K, which conceptually resemble the operando experimental condition, leading to a prototype of operando QM-MD (o-QM-MD). With o-QM-MD, we characterize 22 possible reactive intermediates in carbon dioxide reduction reactions (CO₂RRs). Furthermore, we report the vibrational density of states (v-DoSs) of these intermediates from two-phase thermodynamic (2PT) analysis. Accordingly, we identify important intermediates such as chemisorbed CO₂ (b-CO₂), *HOC-COH, *C-CH, and *C-COH in our o-QM-MD likely to explain the experimental spectrum. Indeed,weassign the experimental peak at 1,191 cm−1 to the mode of C-O stretch in *HOC-COH predicted at 1,189 cm−1 and the experimental peak at 1,584 cm−1 to the mode of C-C stretch in *C-COD predicted at 1,581 cm−1. Interestingly, we find that surface ketene (*C=C=O), arising from *HOC-COH dehydration, also shows signals at around 1,584 cm−1, which indicates a nonelectrochemical pathway of hydrocarbon formation at low overpotential and high pH conditions.