Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Spatial and temporal scales of dopamine transmission
by
Goel Pragya
, Liu Changliang
, Kaeser, Pascal S
in
Cell activation
/ Dopamine
/ Neostriatum
/ Neuromodulation
/ Receptor mechanisms
/ Signal transduction
/ Synaptic transmission
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Spatial and temporal scales of dopamine transmission
by
Goel Pragya
, Liu Changliang
, Kaeser, Pascal S
in
Cell activation
/ Dopamine
/ Neostriatum
/ Neuromodulation
/ Receptor mechanisms
/ Signal transduction
/ Synaptic transmission
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Spatial and temporal scales of dopamine transmission
2021
Request Book From Autostore
and Choose the Collection Method
Overview
Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.Dopamine is often portrayed as a diffuse, slow neuromodulator, yet such signalling cannot explain its broad and sometimes rapid roles. Here, Liu, Goel and Kaeser review recent insights into dopamine release and receptors and present a new framework — the domain-overlap model — for dopamine signalling.
Publisher
Nature Publishing Group
This website uses cookies to ensure you get the best experience on our website.