MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model
Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model
Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model
Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model
Journal Article

Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model

2025
Request Book From Autostore and Choose the Collection Method
Overview
Human mobility between different regions is a major factor in large-scale outbreaks of infectious diseases. Deep learning models incorporating infectious disease transmission dynamics for predicting the spread of multi-regional outbreaks due to human mobility have become a hot research topic. In this study, we incorporate the Graph Transformer Neural Network and graph learning mechanisms into a metapopulation SIR model to build a hybrid framework, Metapopulation Graph Transformer Neural Network (M-Graphormer), for high-dimensional parameter estimation and multi-regional epidemic prediction. The framework effectively solves the problem that existing models may lose some hidden spatial dependencies in the data when dealing with the dynamic graph structure of the network due to human mobility. We performed multi-wave infectious disease prediction in multiple regions based on real epidemic data. The results show that the framework is capable of performing high-dimensional parameter estimation and accurately predicting epidemic transmission dynamics in multiple regions even with low data quality. In addition, we retrospectively extrapolate the temporal evolution patterns of contact rate under different interventions implemented in different regions, reflecting the dynamics of intervention intensity and the need for flexibility in adjusting interventions in different regions. To provide early warning of infectious disease transmission, we retrospectively predicted the arrival time of infectious diseases using data from the early stages of outbreaks.