MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus
Journal Article

Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus

2016
Request Book From Autostore and Choose the Collection Method
Overview
The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood–brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2⁺) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3⁺ T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2⁺ monocytes could represent a viable method for alleviating the deleterious consequences of SE.