MbrlCatalogueTitleDetail

Do you wish to reserve the book?
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex
Journal Article

SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3- TBK1 complex

2014
Request Book From Autostore and Choose the Collection Method
Overview
SARS coronavirus (SARS-CoV) develops an antagonis- tic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activa- tion of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro effi- ciently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored PLpro domain (PLpro-TM) from SARS-CoV inhibits STING/ TBKl/IKKE-mediated activation of type I IFNs and dis- rupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBKI. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKK~, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activa- tion of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is dis- rupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3- TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which PLpro negatively regulates IRF3 activation by interaction withSTING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.