MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites
Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites
Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites
Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites
Journal Article

Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites

2019
Request Book From Autostore and Choose the Collection Method
Overview
In this study, the surface properties of iron microparticles were modified for the manipulation of liquid droplets using atmospheric pressure plasma jets. These modified hydrophobic iron microparticles were prepared by synthesizing fluorinated silica nanocomposites on the surfaces of iron microparticles under atmospheric pressure plasma. The compositions of the silica nanocomposites were controlled by the deposition of hexamethyldisiloxane and fluoroalkylsilane precursors. The fluorinated silica nanocomposites were then used with iron microparticles to prepare magnetic liquid marbles. The contact angles of the iron microparticles and the fluorinated silica nanoparticle coating on the glass surface were both 154°, which indicated that the surfaces of these particles were superhydrophobic. Higher hexamethyldisiloxane precursor flow rates produced more silica nanocomposites and resulted in greater roughness and larger contact angles. Changes in surface roughness were characterized by atomic force microscopy. X-ray photoelectron spectroscopy showed that C–F bonds were present on the modified glass surface. The presented approach allows rapid and highly efficient modification of uneven surfaces and can therefore be employed to render hydrophilic, superhydrophobic, and oleophilic surfaces. Moreover, the described hydrophobic iron microparticles can be used for the controlled magnetic manipulation of water droplets and oil–water separation.