MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Glomerular disease classification and lesion identification by machine learning
Glomerular disease classification and lesion identification by machine learning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Glomerular disease classification and lesion identification by machine learning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Glomerular disease classification and lesion identification by machine learning
Glomerular disease classification and lesion identification by machine learning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Glomerular disease classification and lesion identification by machine learning
Glomerular disease classification and lesion identification by machine learning
Journal Article

Glomerular disease classification and lesion identification by machine learning

2022
Request Book From Autostore and Choose the Collection Method
Overview
Background Classification of glomerular diseases and identification of glomerular lesions require careful morphological examination by experienced nephropathologists, which is labor-intensive, time-consuming, and prone to interobserver variability. In this regard, recent advance in machine learning-based image analysis is promising. Methods We combined Mask Region-based Convolutional Neural Networks (Mask R–CNN) with an additional classification step to build a glomerulus detection model using human kidney biopsy samples. A Long Short-Term Memory (LSTM) recurrent neural network was applied for glomerular disease classification, and another two-stage model using ResNeXt-101 was constructed for glomerular lesion identification in cases of lupus nephritis. Results The detection model showed state-of-the-art performance on variedly stained slides with F1 scores up to 0.944. The disease classification model showed good accuracies up to 0.940 on recognizing different glomerular diseases based on H&E whole slide images. The lesion identification model demonstrated high discriminating power with area under the receiver operating characteristic curve up to 0.947 for various glomerular lesions. Models showed good generalization on external testing datasets. Conclusion This study is the first-of-its-kind showing how each step of kidney biopsy interpretation carried out by nephropathologists can be captured and simulated by machine learning models. The models were integrated into a whole slide image viewing and annotating platform to enable nephropathologists to review, correct, and confirm the inference results. Further improvement on model performances and incorporating inputs from immunofluorescence, electron microscopy, and clinical data might realize actual clinical use.