MbrlCatalogueTitleDetail

Do you wish to reserve the book?
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01
Journal Article

High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Peanut ( Arachis hypogaea L.) is a vital global crop, frequently threatened by both abiotic and biotic stresses. Among the most damaging biotic stresses is Tomato spotted wilt virus (TSWV), which causes peanut spotted wilt disease resulting in significant yield loss. Developing TSWV-resistant cultivars is crucial to new cultivar release. Previous studies have used a subset of the “S” recombinant inbred line (RIL) population derived from SunOleic 97R and NC94022 and identified quantitative trait loci (QTLs) for resistance to TSWV. These studies utilized different genotyping techniques and found large consistent genomic regions on chromosome A01. The objective of this study was to fine map the QTL and identify candidate genes using the entire population of 352 RILs and high-density, high-quality peanut SNP arrays. Results We used both versions of the peanut SNP arrays with five years of disease ratings, and successfully mapped the long-sought peanut spotted wilt disease resistance locus, PSWDR-1 . QTL analyses identified two major QTLs, explaining 41.43% and 43.69% of the phenotypic variance within 3.6 cM and 0.28 cM intervals using the peanut Axiom_ Arachis -v1 and Axiom_ Arachis -v2 SNP arrays, respectively, on chromosome A01. These QTLs corresponded to 295 kb and 235 kb physical intervals. The unique overlap region of these two QTLs was 488 kb. A comparison of the genetic linkage map with the reference genome revealed a 1.3 Mb recombination “cold spot” (11.325–12.646 Mb) with only two recombination events of RIL-S1 and RIL-S17, which displayed contrasting phenotypes. Sequencing of these two recombinants confirmed the cold spot with only five SNPs detected within this region. Conclusions This study successfully identified a peanut spotted wilt disease resistance locus, PSWDR-1 , on chromosome A01 within a recombination “cold spot”. The PSWDR-1 locus contains three candidate genes, a TIR-NBS-LRR gene ( Arahy.1PK53M ), a glutamate receptor-like gene ( Arahy.RI1BYW ), and an MLO-like protein ( Arahy.FX71XI ). These findings provide a foundation for future functional studies to validate the roles of these candidate genes in resistance and application in breeding TSWV-resistant peanut cultivars.