MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
Journal Article

Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta

2004
Request Book From Autostore and Choose the Collection Method
Overview
In the arterial circulation, regions of disturbed flow (DF), which are characterized by flow separation and transient vortices, are susceptible to atherogenesis, whereas regions of undisturbed laminar flow (UF) appear protected. Coordinated regulation of gene expression by endothelial cells (EC) may result in differing regional phenotypes that either favor or inhibit atherogenesis. Linearly amplified RNA from freshly isolated EC of DF (inner aortic arch) and UF (descending thoracic aorta) regions of normal adult pigs was used to profile differential gene expression reflecting the steady state in vivo. By using human cDNA arrays, ≈2,000 putatively differentially expressed genes were identified through false-discovery-rate statistical methods. A sampling of these genes was validated by quantitative realtime PCR and/or immunostaining en face. Biological pathway analysis revealed that in DF there was up-regulation of several broad-acting inflammatory cytokines and receptors, in addition to elements of the NF-κB system, which is consistent with a proinflammatory phenotype. However, the NF-κB complex was predominantly cytoplasmic (inactive) in both regions, and no significant differences were observed in the expression of key adhesion molecules for inflammatory cells associated with early atherogenesis. Furthermore, there was no histological evidence of inflammation. Protective profiles were observed in DF regions, notably an enhanced antioxidative gene expression. This study provides a public database of regional EC gene expression in a normal animal, implicates hemodynamics as a contributory mechanism to athero-susceptibility, and reveals the coexistence of pro- and antiatherosclerotic transcript profiles in susceptible regions. The introduction of additional risk factors may shift this balance to favor lesion development.