MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands
Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands
Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands
Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands
Journal Article

Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands

2022
Request Book From Autostore and Choose the Collection Method
Overview
The World Health Organization’s revised NTD Roadmap and the newly launched Guidelines target elimination of schistosomiasis as a public health problem in all endemic areas by 2030. Key to meeting this goal is elucidating how selective pressures imposed by interventions shape parasite populations. Our aim was to identify any differential impact of a unique cluster-randomized tri-armed elimination intervention (biannual mass drug administration (MDA) applied alone or in association with either mollusciciding (snail control) or behavioural change interventions) across two Zanzibarian islands (Pemba and Unguja) on the population genetic composition of Schistosoma haematobium over space and time. Fifteen microsatellite loci were used to analyse individual miracidia collected from infected individuals across islands and intervention arms at the start (2012 baseline: 1,522 miracidia from 176 children; 303 from 43 adults; age-range 6–75, mean 12.7 years) and at year 5 (2016: 1,486 miracidia from 146 children; 214 from 25 adults; age-range 9–46, mean 12.4 years). Measures of genetic diversity included allelic richness (Ar), Expected (He) and Observed heterozygosity (Ho), inbreeding coefficient ( F ST ), parentage analysis, estimated worm burden, worm fecundity, and genetic sub-structuring. There was little evidence of differential selective pressures on population genetic diversity, inbreeding or estimated worm burdens by treatment arm, with only the MDA+snail control arm within Unguja showing trends towards reduced diversity and altered inbreeding over time. The greatest differences overall, both in terms of parasite fecundity and genetic sub-structuring, were observed between the islands, consistent with Pemba’s persistently higher mean infection intensities compared to neighbouring Unguja, and within islands in terms of infection hotspots (across three definitions). These findings highlight the important contribution of population genetic analyses to elucidate extensive genetic diversity and biological drivers, including potential gene-environmental factors, that may override short term selective pressures imposed by differential disease control strategies. Trial Registration : ClinicalTrials.gov ISRCTN48837681 .