MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Matchgates and classical simulation of quantum circuits
Matchgates and classical simulation of quantum circuits
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Matchgates and classical simulation of quantum circuits
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Matchgates and classical simulation of quantum circuits
Matchgates and classical simulation of quantum circuits

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Matchgates and classical simulation of quantum circuits
Matchgates and classical simulation of quantum circuits
Journal Article

Matchgates and classical simulation of quantum circuits

2008
Request Book From Autostore and Choose the Collection Method
Overview
Let G(A, B) denote the two-qubit gate that acts as the one-qubit SU(2) gates A and B in the even and odd parity subspaces, respectively, of two qubits. Using a Clifford algebra formalism, we show that arbitrary uniform families of circuits of these gates, restricted to act only on nearest neighbour (n.n.) qubit lines, can be classically efficiently simulated. This reproduces a result originally proved by Valiant using his matchgate formalism, and subsequently related by others to free fermionic physics. We further show that if the n.n. condition is slightly relaxed, to allow the same gates to act only on n.n. and next n.n. qubit lines, then the resulting circuits can efficiently perform universal quantum computation. From this point of view, the gap between efficient classical and quantum computational power is bridged by a very modest use of a seemingly innocuous resource (qubit swapping). We also extend the simulation result above in various ways. In particular, by exploiting properties of Clifford operations in conjunction with the Jordan-Wigner representation of a Clifford algebra, we show how one may generalize the simulation result above to provide further classes of classically efficiently simulatable quantum circuits, which we call Gaussian quantum circuits.