MbrlCatalogueTitleDetail

Do you wish to reserve the book?
n‐dimensional hypervolume
n‐dimensional hypervolume
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
n‐dimensional hypervolume
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
n‐dimensional hypervolume
n‐dimensional hypervolume

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
n‐dimensional hypervolume
Journal Article

n‐dimensional hypervolume

2014
Request Book From Autostore and Choose the Collection Method
Overview
AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high‐dimensional or holey datasets. INNOVATION: We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. MAIN CONCLUSIONS: We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high‐dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed.