MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Polyethylene glycol as a promising synthetic material for repair of spinal cord injury
Polyethylene glycol as a promising synthetic material for repair of spinal cord injury
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Polyethylene glycol as a promising synthetic material for repair of spinal cord injury
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Polyethylene glycol as a promising synthetic material for repair of spinal cord injury
Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Polyethylene glycol as a promising synthetic material for repair of spinal cord injury
Polyethylene glycol as a promising synthetic material for repair of spinal cord injury
Journal Article

Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

2017
Request Book From Autostore and Choose the Collection Method
Overview
Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels:(1) polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury.(2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers.(3) Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.
Publisher
Medknow Publications and Media Pvt. Ltd,Medknow Publications & Media Pvt. Ltd,Department of Brain, Affiliated Hospital of China Logistics College of People's Armed Police Forces, Tianjin, China,Tianjin University of Traditional Chinese Medicine, Tianjin, China%Tianjin Key Laboratory of Neurological Trauma Repair, Tianjin, China%Jinzhou Medical University, Jinzhou, Liaoning Province, China,Medknow Publications & Media Pvt Ltd,Wolters Kluwer Medknow Publications

MBRLCatalogueRelatedBooks