MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms
Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms
Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms
Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms
Journal Article

Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms

2014
Request Book From Autostore and Choose the Collection Method
Overview
Significance A fundamental paradigm of bone biology is that the remodeling process—by which bones detect and repair damage—is orchestrated by osteocytes. The bones of most extant fish, however, lack these cells and should be unable to repair damage in their bones. We provide evidence for intense remodeling in the anosteocytic bone of billfishes, such as swordfish and marlin. Our observations challenge the central axiom that osteocytes alone are responsible for remodeling, suggesting alternate mechanisms in bone physiology and/or variation in the roles of bone cells. In addition, billfish bone exhibits an array of striking material properties that distinguish it from mammalian bone despite having similar composition, underlining that skeletal biology concepts are limiting when based on mammalian tissues alone. A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process.