MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
Journal Article

Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug

2013
Request Book From Autostore and Choose the Collection Method
Overview
Cisplatin and other DNA-damaging chemotherapeutics are widely used to treat a broad spectrum of malignancies. However, their application is limited by both intrinsic and acquired chemoresistance. Most mutations that result from DNA damage are the consequence of error-prone translesion DNA synthesis, which could be responsible for the acquired resistance against DNA-damaging agents. Recent studies have shown that the suppression of crucial gene products (e.g., REV1 , REV3L) involved in the error-prone translesion DNA synthesis pathway can sensitize intrinsically resistant tumors to chemotherapy and reduce the frequency of acquired drug resistance of relapsed tumors. In this context, combining conventional DNA-damaging chemotherapy with siRNA-based therapeutics represents a promising strategy for treating patients with malignancies. To this end, we developed a versatile nanoparticle (NP) platform to deliver a cisplatin prodrug and REV1 / REV3L -specific siRNAs simultaneously to the same tumor cells. NPs are formulated through self-assembly of a biodegradable poly(lactide- co glycolide)- b -poly(ethylene glycol) diblock copolymer and a self-synthesized cationic lipid. We demonstrated the potency of the siRNA-containing NPs to knock down target genes efficiently both in vitro and in vivo. The therapeutic efficacy of NPs containing both cisplatin prodrug and REV1 / REV3L -specific siRNAs was further investigated in vitro and in vivo. Quantitative real-time PCR results showed that the NPs exhibited a significant and sustained suppression of both genes in tumors for up to 3 d after a single dose. Administering these NPs revealed a synergistic effect on tumor inhibition in a human Lymph Node Carcinoma of the Prostate xenograft mouse model that was strikingly more effective than platinum monotherapy.