MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake
Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake
Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake
Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake
Journal Article

Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake

2023
Request Book From Autostore and Choose the Collection Method
Overview
We investigated temperature records associated with seafloor pressure observations at eight stations that experienced the 2011 Mw 9 Tohoku earthquake near its epicenter. The temperature data were based on the temperature measured inside the pressure transducer. We proposed a method to estimate ambient water temperature from the internal temperature using an equation of heat conduction. The estimated seafloor water temperature showed remarkable anomalies, especially increases several hours after the Mw 9 earthquake. A station of P03 (sea depth of 1.1 km) showed an abrupt temperature increase of + 0.19 °C that occurred ~ 3 h after the earthquake, which lasted for several hours. At stations of GJT3 (sea depth of 3.3 km) and TJT1 (sea depth of 5.8 km), there were abrupt temperature anomalies of + 0.20 °C and + 0.10 °C that began to occur 3–4 h after the earthquake. These anomalies both decayed to their original levels over a few tens of days. During the decay processes, only TJT1 showed several intermittent temperature rises. A water temperature anomaly within + 0.03 °C was found up to ~ 500 m above TJT1 2 weeks after the earthquake. There was no significant anomaly at the other five stations. Processes to cause these seafloor temperature anomalies were discussed. The temperature anomaly of P03 was reasonably caused by a tsunami-generated turbidity current, as also suggested by a previous study. Meanwhile, we proposed a scenario that the abrupt temperature anomalies of GJT3/TJT1 and the intermittent anomalies of TJT1 were caused by warm water discharges from the subseafloor. The pathways of the warm water were probably composed of the branch normal fault between GJT3 and TJT1, the reverse fault near TJT1, the backstop interface, and perhaps reverse faults at the frontal prism. The proposed scenario was almost compatible with other studies based on epicentral observations. We estimated the heat properties of the initial temperature anomalies of GJT3/TJT1. The estimated heat source might be explained by that most of the geothermal fluids trapped in those fault pathways were discharged to the seafloor immediately after the earthquake. The onsets of the subsequent intermittent anomalies of TJT1 were possibly activated by low or falling ocean tidal loading.