MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Conditional Distance Correlation
Conditional Distance Correlation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Conditional Distance Correlation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Conditional Distance Correlation
Conditional Distance Correlation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Conditional Distance Correlation
Conditional Distance Correlation
Journal Article

Conditional Distance Correlation

2015
Request Book From Autostore and Choose the Collection Method
Overview
Statistical inference on conditional dependence is essential in many fields including genetic association studies and graphical models. The classic measures focus on linear conditional correlations and are incapable of characterizing nonlinear conditional relationship including nonmonotonic relationship. To overcome this limitation, we introduce a nonparametric measure of conditional dependence for multivariate random variables with arbitrary dimensions. Our measure possesses the necessary and intuitive properties as a correlation index. Briefly, it is zero almost surely if and only if two multivariate random variables are conditionally independent given a third random variable. More importantly, the sample version of this measure can be expressed elegantly as the root of a V or U-process with random kernels and has desirable theoretical properties. Based on the sample version, we propose a test for conditional independence, which is proven to be more powerful than some recently developed tests through our numerical simulations. The advantage of our test is even greater when the relationship between the multivariate random variables given the third random variable cannot be expressed in a linear or monotonic function of one random variable versus the other. We also show that the sample measure is consistent and weakly convergent, and the test statistic is asymptotically normal. By applying our test in a real data analysis, we are able to identify two conditionally associated gene expressions, which otherwise cannot be revealed. Thus, our measure of conditional dependence is not only an ideal concept, but also has important practical utility. Supplementary materials for this article are available online.