MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia
Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia
Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia
Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia
Journal Article

Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia

2021
Request Book From Autostore and Choose the Collection Method
Overview
Background Semi-competing risks arise when interest lies in the time-to-event for some non-terminal event, the observation of which is subject to some terminal event. One approach to assessing the impact of covariates on semi-competing risks data is through the illness-death model with shared frailty, where hazard regression models are used to model the effect of covariates on the endpoints. The shared frailty term, which can be viewed as an individual-specific random effect, acknowledges dependence between the events that is not accounted for by covariates. Although methods exist for fitting such a model to right-censored semi-competing risks data, there is currently a gap in the literature for fitting such models when a flexible baseline hazard specification is desired and the data are left-truncated, for example when time is on the age scale. We provide a modeling framework and openly available code for implementation. Methods We specified the model and the likelihood function that accounts for left-truncated data, and provided an approach to estimation and inference via maximum likelihood. Our model was fully parametric, specifying baseline hazards via Weibull or B-splines. Using simulated data we examined the operating characteristics of the implementation in terms of bias and coverage. We applied our methods to a dataset of 33,117 Kaiser Permanente Northern California members aged 65 or older examining the relationship between educational level (categorized as: high school or less; trade school, some college or college graduate; post-graduate) and incident dementia and death. Results A simulation study showed that our implementation provided regression parameter estimates with negligible bias and good coverage. In our data application, we found higher levels of education are associated with a lower risk of incident dementia, after adjusting for sex and race/ethnicity. Conclusions As illustrated by our analysis of Kaiser data, our proposed modeling framework allows the analyst to assess the impact of covariates on semi-competing risks data, such as incident dementia and death, while accounting for dependence between the outcomes when data are left-truncated, as is common in studies of aging and dementia.