MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice
Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice
Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice
Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice
Journal Article

Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice

2024
Request Book From Autostore and Choose the Collection Method
Overview
Background Metabolic disorders have become one of the global medical problems. Due to the complexity of its pathogenesis, there is still no effective treatment. Bile acids (BAs) and gut microbiota (GM) have been proved to be closely related to host metabolism, which could be important targets for metabolic disorders. Zhi-Kang-Yin (ZKY) is a traditional Chinese medicine (TCM) formula developed by the research team according to theory of TCM and has been shown to improve metabolism in clinic. However, the underlying mechanisms are unclear. Aim of the study This study aimed to investigate the potential mechanisms of the beneficial effect of ZKY on metabolism. Methods High-fat diet (HFD)-fed mice were treated with and without ZKY. The glucose and lipid metabolism-related indexes were measured. BA profile, GM composition and hepatic transcriptome were then investigated to analyze the changes of BAs, GM, and hepatic gene expression. Moreover, the relationship between GM and BAs was identified with functional gene quantification and ex vivo fermentation experiment. Results ZKY reduced weight gain and lipid levels in both liver and serum, attenuated hepatic steatosis and improved glucose tolerance in HFD-fed mice. BA profile detection showed that ZKY changed the composition of BAs and increased the proportion of unconjugated BAs and non-12-OH BAs. Hepatic transcriptomic analysis revealed fatty acid metabolism and BA biosynthesis related pathways were regulated. In addition, ZKY significantly changed the structure of GM and upregulated the gene copy number of bacterial bile salt hydrolase. Meanwhile, ZKY directly promoted the growth of Bifidobacterium , which is a well-known bile salt hydrolase - producing genus. The ex vivo co-culture experiment with gut microbiota and BAs demonstrated that the changes of BAs profile in ZKY group were mediated by ZKY-shifted GM, which led to increased expression of genes associated with fatty acid degradation in the liver. Conclusion Our study indicated that the effect of ZKY on improving metabolism is associated with the modulation of GM-BAs axis, especially, by upregulating the abundance of bile salt hydrolase-expression bacteria and increasing the levels of unconjugated BAs. This study indicates that GM-BAs axis might be an important pathway for improving metabolic disorders by ZKY.