MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
Journal Article

Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction

2022
Request Book From Autostore and Choose the Collection Method
Overview
Background Computer-aided drug design provides an effective method of identifying lead compounds. However, success rates are significantly bottlenecked by the lack of accurate and reliable scoring functions needed to evaluate binding affinities of protein–ligand complexes. Therefore, many scoring functions based on machine learning or deep learning have been developed to improve prediction accuracies in recent years. In this work, we proposed a novel featurization method, generating a new scoring function model based on 3D convolutional neural network. Results This work showed the results from testing four architectures and three featurization methods, and outlined the development of a novel deep 3D convolutional neural network scoring function model. This model simplified feature engineering, and in combination with Grad-CAM made the intermediate layers of the neural network more interpretable. This model was evaluated and compared with other scoring functions on multiple independent datasets. The Pearson correlation coefficients between the predicted binding affinities by our model and the experimental data achieved 0.7928, 0.7946, 0.6758, and 0.6474 on CASF-2016 dataset, CASF-2013 dataset, CSAR_HiQ_NRC_set, and Astex_diverse_set, respectively. Overall, our model performed accurately and stably enough in the scoring power to predict the binding affinity of a protein–ligand complex. Conclusions These results indicate our model is an excellent scoring function, and performs well in scoring power for accurately and stably predicting the protein–ligand affinity. Our model will contribute towards improving the success rate of virtual screening, thus will accelerate the development of potential drugs or novel biologically active lead compounds.