MbrlCatalogueTitleDetail

Do you wish to reserve the book?
TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target
TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target
TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target
TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target
Journal Article

TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target

2023
Request Book From Autostore and Choose the Collection Method
Overview
Thioredoxin-interacting protein (TXNIP), which is also known as thioredoxin-binding protein 2 (TBP2), directly interacts with the major antioxidant protein thioredoxin (TRX) and inhibits its antioxidant function and expression. However, recent studies have demonstrated that TXNIP is a multifunctional protein with functions beyond increasing intracellular oxidative stress. TXNIP activates endoplasmic reticulum (ER) stress-mediated nucleotide-binding oligomerization domain (NOD)-like receptor protein-3 (NLRP3) inflammasome complex formation, triggers mitochondrial stress-induced apoptosis, and stimulates inflammatory cell death (pyroptosis). These newly discovered functions of TXNIP highlight its role in disease development, especially in response to several cellular stress factors. In this review, we provide an overview of the multiple functions of TXNIP in pathological conditions and summarize its involvement in various diseases, such as diabetes, chronic kidney disease, and neurodegenerative diseases. We also discuss the potential of TXNIP as a therapeutic target and TXNIP inhibitors as novel therapeutic drugs for treating these diseases. Metabolism: A protein target for diverse disorders A protein with the potential to fuel uncontrolled inflammation and cell death could offer a target for a variety of metabolic, neurodegenerative, and other diseases. The cellular redox system is a set of reactions that helps prevent accumulation of toxic byproducts of metabolism. Stressful conditions lead to the activation of the TXNIP protein, an inhibitor of the redox system, and Eui-Hwan Choi and Sun-Ji Park at the Daegu-Gyeongbuk Medical Innovation Foundation, South Korea, have reviewed how TXNIP contributes to diverse pathophysiological states. For example, TXNIP-mediated redox inhibition is associated with the nervous system inflammation seen in Alzheimer’s disease, and also contributes to premature death of insulin-secreting cells in patients with diabetes. Several drugs have been identified that can reduce TXNIP activity, and ongoing preclinical studies are now examining the therapeutic potential of such agents.