MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population
Journal Article

Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population

2022
Request Book From Autostore and Choose the Collection Method
Overview
Background The gut microbiome has proven to be an important factor affecting obesity; however, it remains a challenge to identify consistent biomarkers across geographic locations and perform precisely targeted modulation for obese individuals. Results This study proposed a systematic machine learning framework and applied it to 870 human stool metagenomes across five countries to obtain comprehensive regional shared biomarkers and conduct a personalized modulation analysis. In our pipeline, a heterogeneous ensemble feature selection diagram is first developed to determine an optimal subset of biomarkers through the aggregation of multiple techniques. Subsequently, a deep reinforcement learning method was established to alter the targeted composition to the desired healthy target. In this manner, we can realize personalized modulation by counterfactual inference. Consequently, a total of 42 species were identified as regional shared biomarkers, and they showed good performance in distinguishing obese people from the healthy group (area under curve (AUC) =0.85) when demonstrated on validation datasets. In addition, by pooling all counterfactual explanations, we found that Akkermansia muciniphila , Faecalibacterium prausnitzii, Prevotella copri, Bacteroides dorei, Bacteroides eggerthii, Alistipes finegoldii, Alistipes shahii, Eubacterium sp. _CAG_180, and Roseburia hominis may be potential broad-spectrum targets with consistent modulation in the multi-regional obese population. Conclusions This article shows that based on our proposed machine-learning framework, we can obtain more comprehensive and accurate biomarkers and provide modulation analysis for the obese population. Moreover, our machine-learning framework will also be very useful for other researchers to further obtain biomarkers and perform counterfactual modulation analysis in different diseases.