MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer
Journal Article

A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer

2020
Request Book From Autostore and Choose the Collection Method
Overview
Background Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown. Methods A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses. Factors expressed by the quiescent/slow cycling population were analyzed through lentiviral overexpression approaches for their ability to induce a dormant chemoresistant state both in vitro and in mouse xenografts. The correlation between quiescence-associated factors, CRC consensus molecular subtype and cancer prognosis was analyzed in large patient datasets. Results Untreated colorectal tumors contain a population of quiescent/slow cycling cells with stem cell features (quiescent cancer stem cells, QCSCs) characterized by a predetermined mesenchymal-like chemoresistant phenotype. QCSCs expressed increased levels of ZEB2, a transcription factor involved in stem cell plasticity and epithelial-mesenchymal transition (EMT), and of antiapototic factors pCRAF and pASK1. ZEB2 overexpression upregulated pCRAF/pASK1 levels resulting in increased chemoresistance, enrichment of cells with stemness/EMT traits and proliferative slowdown of tumor xenografts. In parallel, chemotherapy treatment of tumor xenografts induced the prevalence of QCSCs with a stemness/EMT phenotype and activation of the ZEB2/pCRAF/pASK1 axis, resulting in a chemotherapy-unresponsive state. In CRC patients, increased ZEB2 levels correlated with worse relapse-free survival and were strongly associated to the consensus molecular subtype 4 (CMS4) characterized by dismal prognosis, decreased proliferative rates and upregulation of EMT genes. Conclusions These results show that chemotherapy-naive tumors contain a cell population characterized by a coordinated program of chemoresistance, quiescence, stemness and EMT. Such population becomes prevalent upon drug treatment and is responsible for chemotherapy resistance, thus representing a key target for more effective therapeutic approaches.

MBRLCatalogueRelatedBooks